
Stuff you need to know about CS144 (Fall 2021)

CS144 Staff

September 20, 2021

Prerequisites
The formal prerequisite for CS144 is CS110. CS144 is a lab course: 45% of your grade is based on a quarter-long
lab assignment implemented in C++, which means you need to be very comfortable with C++ and using standard
debugging tools (if you are reading through thousands of lines of printf output you are doing something wrong).
CS107 is not sufficient preparation: you need more programming experience. CS144 is offered every year, so please
wait until you are ready before taking it. That being said, if you did pretty well in CS110 you should do fine in CS144.

Summary
CS144 is an introductory course about computer networks. You will learn about the basic principles of computer
networks, for example packet switching, layering, encapsulation and protocols; and you will learn how applications
such as the world-wide-web, video streaming (e.g. Netflix and Hulu), video conferencing (e.g. Zoom and Skype) and
BitTorrent use the network to communicate. You will spend quite a lot of time learning about the specifics of how the
Internet works – which is of course by far the biggest computer network ever built. You will learn how applications
communicate reliably over an unreliable Internet. And you will build portions of the Internet yourself! In fact, we
believe that in CS144 you build more parts of the Internet infrastructure than in any other undergraduate networking
class anywhere. It’s really fun to see how the individual pieces work: You build an Internet router, and a reliable data
delivery service, and then you use it to communicate with remote servers.

In addition to lectures, we will also have a few in-class guest lectures by outside speakers. All the guest lecturers are
excellent speakers with many years of experience making networks work at huge scale. We will also have one or more
in-class exercises, which you will complete during the regular lecture time. These are designed to give you hands-on
experience with tools that are useful for your labs.

Course Website
The course website can be found at https://cs144.stanford.edu.

Credits and Workload
If you are an undergraduate, you must enroll for 4 credits. Graduate students may enroll for either 3 or 4 credits. 4
credits means that we expect you to spend, on average, approximately 12 hours per week on CS144. This time is not
uniform through the quarter. But generally speaking, we expect that you’ll spend:

• 0-3 hours/week on the videos and quizzes,

• 3 hours/week in required class meeting lectures, and

• 6 hours/week on lab or exam studying,

for a maximum of 12 hours. You should expect to spend about 50 hours total on the labs.

1



Weekly Units
Website: You can reach the course website, with a pointer to where you can find all the labs, slides, etc., at: https:
//cs144.stanford.edu/.

Textbook: The optional course textbook is: Kurose and Ross, Computer Networking: A Top Down Approach, 8th
edition (7th edition is fine too). We will not be assigning readings, but it is an excellent reference to supplement the
lectures and videos.

Class Attendance
You should try to come to all live lectures and lab sessions. You will learn more material that way; we have found that
students learn more by taking part.

Exams
We will have two in-class exams: A midterm exam on Wednesday Nov. 3 and a final exam (to be scheduled).

Grading
The grading formula is described in the day 1 slides (“logistics”) available on the website.

If you feel you were graded incorrectly on a homework, lab, or exam, please let us know as soon as possible. At
the end of the quarter, we take the distribution of numerical grades and decide what ranges correspond to what letter
grades. We don’t decide on grade ranges a priori because sometimes exam questions are harder or easier than we
thought they would be, and so we want to be able to adjust accordingly. However, CS144 is not graded on a curve: we
decide on grade ranges, not class population percentages. We do not publish the numerical grade ranges corresponding
to letter grades.

Late Policy for lab assignment
The laboratory component of this course is one quarter-length assignment in which students design and build a sub-
stantial fraction of the Internet infrastructure on their own computer. The lab has eight weekly checkpoints. Each
week, you will build on your own codebase, until by the end of the class you have created a whole networking stack
(simple Web client, TCP implementation, network interface, and router).

The lab is graded in two components: a “correctness” grade (80% of the lab grade) assessed at the end of the term, and
principally based on automated tests) and a “subjective/style” grade (20%). To receive a subject/style grade and timely
feedback from your CA, you will need to submit each checkpoint by its deadline. It is strongly in your interest
to do this so you can receive timely feedback. Any checkpoint can be submitted up to two days late and you will
still receive feedback, with the subjective grade capped at a max score of 67%. We cannot guarantee feedback on a
checkpoint if submitted after this point.

If you struggle with Lab 0 or Lab 1 because you find it difficult to write the code, you might want to consider dropping
the class. The first two labs will give you early feedback on whether your programming skills are sufficient for the
course.

If a real-life event (wedding, funeral, COVID, hospitalization, etc.) disrupts your ability to turn an assignment in on
time, please let us know as early as possible. Clearly, some such events, such as a trip to the emergency room, are
less expected than others, and we understand. Emailing the staff 48 hours before an assignment is due asking for an
extension because you have a wedding to go to might be met with a frown; email us two weeks before the assignment
is due and we’ll do our best to accommodate. Our goal is to make sure you don’t fall behind on the next assignment.

2

https://cs144.stanford.edu/
https://cs144.stanford.edu/


Incomplete Policy
Our policy is to never give incompletes for CS144. If you are falling behind or something life-changing comes up,
please contact us immediately and we’ll try to work something out. Contacting us early is better than late. Generally,
taking too heavy a course load is not a sufficient justification: courses last a quarter for a reason and you are expected
to be responsible for your own schedule. We don’t allow incompletes because grading programming assignments
outside the normal quarter is exceedingly difficult (and inconsistent).

Office Hours and Email
If you have a question about the class material or a programming assignment, you have three ways to ask: in person,
Ed, and the staff email list. Here are some guidelines on how you can ask questions to maximize the amount and
quality of help we can provide.

Please use Ed for questions about programming assignments and general course questions. Using Ed means that
everyone can benefit from the answer; it may be that other students had the same question. Please do ask questions
about the requirements of the assignment, the provided code, or the expected behavior of your system. Please don’t
ask questions that relate to how to implement a solution. For example, please don’t ask questions that include or ask
for source code. If you have any uncertainty about whether a question is OK, please email the course staff. You can
find answers to almost any general C++ question on the web.

If you have questions about your particular solution to an assignment, you should come to office hours, or ask on an
evening lab session.

Generally speaking, it’s almost impossible to answer programming assignment questions over email. The round-trip-
time is too long, and it’s not interactive. Email discussions often boil down to needing a TA to find a bug for you,
which isn’t very educational. Therefore, please attend office hours to discuss programming questions.

Honor Code
We report all Honor Code Violations. We use tools to catch plagiarizers and the punishments are severe. Honor Code
violations are taken very seriously and we want to encourage you to never venture over the line. Our goal for this year
is for zero violations of the Honor Code. In 2016 and 2017, we succeeded. But in 2018 and 2019 we had over five
violations. We would love to have a quarter free of any Honor Code Violations.

Most Honor Code Violations in CS144 happen when students reuse and modify code written by other students, in-
cluding solutions posted on-line. In this course, we take the Honor Code very seriously and we expect all students
to do the same. The good news is that the vast majority of students do follow the Honor Code. The bad news is
that historical evidence indicates that some students will submit work that is not their own, not only shortchanging
their own learning, but undermining the atmosphere of trust and individual achievement that characterizes Stanford’s
academic community. To protect academic integrity and the interests of all students, the course staff will investigate
all possible Honor Code violations and refer them to the Office of Community Standards as necessary.

We will discuss this in the first class.

If you have any questions or doubts about the Honor Code, please talk to the instructor. Honor Code violations are
no laughing matter at Stanford and it is much better to ask what might seem like a silly question now than risk your
academic career. The Honor Code has a long tradition at Stanford dating back to Spring 1921 when the University first
adopted the honor system. Today the Honor Code continues to govern academic conduct of both students and faculty
at Stanford. The Honor code reads as follows:

THE STANFORD UNIVERSITY HONOR CODE

1. The Honor Code is an undertaking of the students, individually and collectively:

• that they will not give or receive aid in examinations;

3



• that they will not give or receive unpermitted aid in class work, in the preparation of reports, or in any
other work that is to be used by the instructor as the basis of grading;

• that they will do their share and take an active part in seeing to it that others as well as themselves uphold
the spirit and letter of the Honor Code.

2. The faculty on its part manifests its confidence in the honor of its students by refraining from proctoring exam-
inations and from taking unusual and unreasonable precautions to prevent the forms of dishonesty mentioned
above. The faculty will also avoid, as far as practicable, academic procedures that create temptations to violate
the Honor Code.

3. While the faculty alone has the right and obligation to set academic requirements, the students and faculty will
work together to establish optimal conditions for honorable academic work.

The underlying premise of the policy is that all academic work represents independent, original work of the author
and the Honor Code aims to foster an academic environment that encourages adherence to these principles. As we are
all bound to respect and uphold the Honor Code, it is important to define acceptable and unacceptable behaviors with
regard to this course so as to eliminate any ambiguity.

Permitted Collaboration: The following items are encouraged and allowed at all times for all students in this class:

• Discussion of material covered during lecture, problem sessions, or in handouts

• Discussion of the requirements of an assignment

• Discussion of the use of tools or development environments

• Discussion of general approaches to solving problems

• Discussion of general techniques of coding or debugging

• Discussion between a student and a TA or instructor for the course

Collaboration Requiring Citation: Two students engaging in more detailed discussions must be careful to document
their collaboration. Students are required to include the names of those who provide specific assistance to properly
credit their contribution, in the same manner as one would cite a reference in a research paper. The expectation is
that even with a citation, the author must be able to explain the solution. Some examples of collaboration that require
citation include:

• Discussing the “key” to a problem set or programming assignment. Problem set questions are often designed
such that the critical concept takes careful thought and gaining that insight from someone else must therefore be
documented.

• Discussing the design of a programming project. Design is a crucial aspect of the programming process and
discussion can be valuable. Any design input received from others must be cited.

• Receiving assistance from another student in debugging code. While the TAs are the preferred source for advice,
any detailed assistance from someone else must be credited.

• Sharing advice for testing. For example, if someone provides important information on lessons learned (“my
program didn’t handle the case where the value was 0”) that source must be credited.

• Research from alternative sources. Researching related topics, such as through the Internet, must be documented
if the solution submitted is derived from the research information.

Unpermitted Collaboration: All submissions must represent original, independent work. Some examples of activi-
ties that do not represent original work include:

• Copying solutions from others or knowingly allowing others to copy your solution. In particular, do not ask
anyone to provide a copy of his or her solution or, conversely, give a solution to another student who requests it.
Similarly, do not discuss algorithmic strategies to such an extent that you and your collaborator submit exactly
the same solution. Use of solutions posted to websites, such as at other universities, is prohibited. Be aware that

4



we photocopy some of the exams prior to handing them back. Also be aware that placing your source code for
the course in a publicly accessible repository where others can copy it is unpermitted collaboration.

• Using work from past quarters. The use of another student’s solution or the posted class solutions from a pre-
vious quarter constitutes a violation. We use a sophisticated software tool that cross-checks every assignment
against every other assignment submitted this year, and previous years. It catches common code, even if com-
ments and variable names are changed. In fact, in order to “fool” it, you have to change so much code that
it would be quicker to do the assignment yourself (we tried it!). Developing good problem set questions and
programming assignments often takes years and new assignments invariably have problems and that require
polishing. To provide the most effective exercises, questions and assignments are commonly reused. Students
retaking the course are expected to notify the course staff to avoid coming under suspicion. If you looked at
solutions before taking the course, delete any such code you might have and email the course staff mailing list
immediately to let us know.

• Studying another student’s solution. Do not read another solution submission whether in electronic or printed
form, even to “check answers.”

• Debugging code for someone else. When debugging code it is easy to inadvertently copy code or algorithmic
solutions. It is acceptable to describe a problem and ask for advice on a way to track down the bug. “What
would you do to try to find this bug?” is an acceptable question; “Can you help me find my bug??” is not.

• Collaborating on or discussing the online graded quizzes before you have completed them. These are intended
to be relatively easy, simple questions that test your basic knowledge.

This section on the Honor Code was based on policies written by Tom Fountain, Eric Roberts, Julie Zelenski, and the
Computer Science Department at Brown University.

5


